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1 Changelog

Revision History

Revision Date Author(s) Description

1.0 September 20, 2022 JP Initial version
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2 Introduction

The mathematical problems of integer factorisation and discrete logarithms over finite fields
or elliptic curves underpin most of the asymmetric algorithms used for key establishment and
digital signatures on the internet. These problems, and hence the algorithms based on them, will
be vulnerable to attacks using Shor’s Algorithm on a sufficiently large general-purpose quantum
computer, known as a Cryptographically Relevant Quantum Computer (CRQC). It is difficult
to predict when, or if, such a device will exist. However, it is necessary to defend against this
possibility. Data encrypted today with an algorithm vulnerable to a quantum computer could
be stored for decryption by a future attacker with a CRQC.(Driscoll, 2022)

This document describes the integration of Post-Quantum Cryptography (PQC) in the Lin-
phone SDK and details the modifications to the ZRTP protocol(Zimmermann et al., 2011) made
to allow the use of PQC.

3 Notations

A∥B denotes the concatenation of byte sequences A and B
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4 Post-Quantum cryptography

4.1 Open Quantum Safe library

Linphone uses liboqs(Stebila and Mosca, 2017) as provider for Post-Quantum cryptography
implementation. liboqs is a project maintained by Open Quantum Safe. liboqs puts together
the code source from the official repositories of various PQC algorithms both key exchange and
signature algorithms. liboqs :

• is frequently updated

• has a large community and is supported by major actors

• provides a consistent API and build scripts for all the NIST PQC standisation candidates

• build scripts’ allow algorithm selection

In the current context, the Linphone SDK requires only key exchange PQC. No signature
algorithms are needed.

As of August 2022, liboqs provides the following Key Encapsulation Mechanism (KEM) algo-
rithms:

• BIKE

• Classic McEliece

• FrodoKEM

• HQC

• Kyber

• NTRU

• NTRU-Prime

• Saber

Kyber being the KEM algorithm first selected to be standardised by the NIST, linphone
currently supports Kyber and HQC, specifically the variants Kyber512 and Kyber1024, HQC128
and HQC256. Other suitable, see 5.4, algorithms provided by liboqs can be included without
major changes to the architecture.

4.2 Hybrid KEM

During the transition from traditional to post-quantum algorithms, it is recommended to
combine both types of algorithm. The construction that combines a traditional key exchange
with post-quantum key exchanges into a single key exchange is known as hybrid key exchange.
We define a hybrid key exchange providing an interface identical to a simple KEM:
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Algorithm 1 KEM interface
function KEMgenKey

return publicKey, secretKey ▷ Generate and return a public key and a secret key
end function

function KEMencaps(publicKey)
return sharedSecret, cipherText ▷ Generate a shared secret and encapsulate it in a

ciphertext
end function

function KEMdecaps(secretKey, cipherText)
return sharedSecret ▷ Retrieve the shared secret from the ciphertext

end function

4.2.1 ECDH-based KEM

The first step is to build a KEM using a traditional ECDH. This is performed using the
method described in the RFC9180 (Barnes et al., 2022) section 4.1.

Algorithm 2 ECDH interface
function ECDHgenKey

return publicKey, secretKey ▷ Generate and return a public key and a secret key
end function

function ECDHcomputeShared(selfSecretKey, peerPublicKey)
return sharedSecret ▷ Generate a shared secret from self secret key and peer public key

end function

function ECDHderivePublicKey(secretKey)
return publicKey ▷ Derive a public key from the secret one

end function
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Algorithm 3 ECDH-based KEM

function KEMgenKey
return ECDHgenKey ▷ Returns public and secret key generated by ECDH

end function

function KEMencaps(publicKey)
pkE, skE ← ECDHgenKey ▷ generate an ephemeral key pair
ssE ← ECDHcomputeShared(skE, publicKey)
ss← hkdf(ssE, pkE∥publicKey) ▷ HKDF as defined in RFC5869
return ss, pkE ▷ returns the ephemeral public key as cipher text

end function

function KEMdecaps(cipherText, secretKey)
ssE ← ECDHcomputeShared(secretKey, cipherText) ▷ cipherText is the pkE
publicKey ← ECDHderivePublicKey(secretKey)
return hkdf(ssE, cipherText∥publicKey) ▷ HKDF as defined in RFC5869

end function

Linphone SDK produces two variants of ECDH-based KEM. One from X25519, the other
from X448 described in (Langley et al., 2016). X22519 and X448 implementation is provided by
libdecaf (Hamburg, 2014).

4.2.2 KEM combiner

Section 3.3 in (Bindel et al., 2019) describes a way of combining several KEMs into one. We
apply this to build an hybrid KEM from two or more KEMs using HMAC-SHA as dual Pseudo
Random Function and extractor. PublicKey, secretKey and cipherText sizes are implicitly known
for each KEM algorithm, so the function split can separate the concatenated entities.

The following pseudo code combines n KEMs together, each component is noted KEMi , with
i in range 1, n.
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Algorithm 4 Combined KEMs

function KEMgenKey
for i← 1, n do

pki, ski ← KEMigenKey
end for
return pk1∥..∥pkn, sk1∥..∥skn ▷ returns a concatenation of both keys

end function

function KEMencaps(publicKey)
pk1∥..∥pkn ← split(publicKey) ▷ split the public key into its components

for i← 1, n do ▷ generate secret and encapsulate it for each component
ssi, cti ← KEMiencaps(pki)

end for
cipherText← ct1∥..∥ckn

k1 ← HMAC-SHA(, ss1) ▷ Derive the shared secret from secrets and a transcript
for i← 2, n do

ki ← HMAC-SHA(ki− 1, ssi)
end for
sharedSecret← HMAC-SHA(kn, cipherText)

return sharedSecret, cipherText
end function

function KEMdecaps(cipherText, secretKey)
sk1∥..∥skn ← split(secretKey) ▷ retrieve secret key and cipher text components
ct1∥..∥ctn ← split(cipherText)

for i← 1, n do ▷ retrieve encapsulated secret for each component
ssi ← KEMidecaps(cti, ski)

end for

k1 ← HMAC-SHA(, ss1) ▷ Derive the shared secret from secrets and a transcript
for i← 2, n do

ki ← HMAC-SHA(ki− 1, ssi)
end for
sharedSecret← HMAC-SHA(kn, cipherText)

return sharedSecret
end function
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Linphone provides several hybrid KEMs:

• two algorithms combined: X25519/Kyber512, X25519/HQC128, X448/Kyber1024, X448/HQC256

• three algorithms combined: X25519/Kyber512/HQC128, X448/Kyber1024/HQC256

Kyber and HQC are based on different mathematical problems, hence the interest of combining
them, with the classic ECDH exchange, should one of them be broken in the future.

4.3 Enable PQC in linphone SDK

liboqs is linked to a module called PostQuantumCryptoEngine. To build the requested part
of liboqs and this module, call the linphone-sdk build command with the option

-DENABLE_PQCRYPTO=On
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5 Audio and video calls

Linphone supports three protocols to initiate a SRTP protected audio/video call: SDES,
DTLS-SRTP and ZRTP. We recommend the later for a higher level of confidentiality. The PQC
algorithm is available only when using ZRTP(Zimmermann et al., 2011).

5.1 ZRTP

ZRTP is a protocol based on Diffie-Hellman to agree on a session key and parameters for es-
tablising a SRTP session. Several features make this protocol secure, among them key continuity
and Man-in-the-Middle detection.

In particular the Man-in-the-Middle(MitM) detection feature is based on commitment of an
endpoint to provide specific public key material in the next protocol packet. Focusing on the
Diffie-Hellman exchange at the core of the protocol(see fig.1 for a complete data flow diagram)
we have:

• Bob commits to use a specific DH public key without revealing it (hash value in the
Commit packet).

• Alice provides her own public key to Bob(pvr in the DHPart1 packet). Bob can compute
the shared secret using Alice public key and can derive the master key.

• Bob provides his public key(pvi in the DHPart2 packet) to Alice in the last packet of the
transcripted sequence used to derive the master key.

• Alice checks the public key provided by Bob is the one he commited to use and compute
the shared secret.

• on both endpoint the DH shared secret is derived including a transcript of the whole
protocole exchange into the master key.

• from the master key is derived a Short Authentication String(SAS) compared vocally
between the two endpoints, if the SAS are not matching, it indicates an ongoing MitM.
The SAS is short so it is easy to vocally compare but it makes it highly sensitive to collision
attack.

This central part of the protocol achieves two functions:

• a secure exchange a shared secret: a passive opponent is not able to retrieve the master
key. This is provided by the Diffie-Hellman exchange.

• prevent a collision attack on the SAS by an active opponent. This is provided by the
commitment on the public key used by Bob. To perform a SAS collision, a malicious
opponent must find a way to have two ZRTP exchanges leading to the same SAS. It boils
down to be in position to compute the master key while still being able to modify it. When
Bob receives Alice’s public key, he has access to all the material to compute the master
key. By commiting to use a specific public key before receiving Alice’s one, only one value
of the master key can be reached making the collision attack on SAS very hard to achieve.
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Alice Bob
| |
| Alice and Bob establish a media session. |
| They initiate ZRTP on media ports |
| |
| F1 Hello (version, options, Alice’s ZID) |
|-------------------------------------------------->|
| HelloACK F2 |
|<--------------------------------------------------|
| Hello (version, options, Bob’s ZID) F3 |
|<--------------------------------------------------|
| F4 HelloACK |
|-------------------------------------------------->|
| |
| Bob acts as the initiator. |
| |
| Commit (Bob’s ZID, options, hash value) F5 |
|<--------------------------------------------------|
| F6 DHPart1 (pvr, shared secret hashes) |
|-------------------------------------------------->|
| DHPart2 (pvi, shared secret hashes) F7 |
|<--------------------------------------------------|
| |
| Alice and Bob generate SRTP session key. |
| |
| F8 Confirm1 (MAC, D,A,V,E flags, sig) |
|-------------------------------------------------->|
| Confirm2 (MAC, D,A,V,E flags, sig) F9 |
|<--------------------------------------------------|
| F10 Conf2ACK |
|-------------------------------------------------->|
| SRTP begins |
|<=================================================>|

Figure 1: Diffie-Hellman mode ZRTP complete data flow
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5.2 KEM version

PQC key exchange algorithm call for candidates from the NIST imposed the usage of a KEM
interface. To our purpose, the major difference between DH and KEM interface is that in a DH
key exchange, both parties have an exactly symmetric role which is not the case with a KEM
scheme.

In the Diffie-Hellman ZRTP exchange, Alice and Bob can compute their DH key pair before
hand, so Bob can commit to use a public key without revealing anything of it. The KEM scheme
cannot straightforwardly substitute the DH one as one party must have access to the other’s
public key in order to start the protocol.

To provide the same central properties we had to design a variant of the ZRTP protocol
adapted to KEM scheme, the KEM mode. Focusing on the KEM exchange at the core of the
protocol(see fig.2 for a complete data flow diagram) we have:

• Bob provides his public key(pvi in the Commit packet) and commits to use a specific nonce
without revealing it(hash value in the Commit packet).

• Alice encapsulates a shared secret in a ciphertext(pvr in KEMPart1 packet) using Bob’s
public key.

– Alice has access to the shared secret but she cannot compute the master key as she
does not have access to the whole exchange transcript.

– Upon ciphertext reception, Bob can compute the shared secret and derive the master
key.

• Bob provides the nonce he commited to(ni in the KEMPart2 packet) to Alice in the last
packet of the transcripted sequence used to derive the master key.

• Alice checks the nonce provided by Bob is the one he commited to use and compute the
master key.

• from the master key is derived a Short Authentication String(SAS) compared vocally
between the two endpoints, if the SAS are not matching, it indicates an ongoing MitM.
The SAS is short so it is easy to vocally compare but it makes it highly sensitive to collision
attack.

This central part of the protocol achieves the two same functions as the DH mode:

• a secure exchange a shared secret: a passive opponent is not able to retrieve the master
key. This is provided by the KEM.

• prevent a collision attack on the SAS by an active opponent. This is provided by the
commitment on the nonce used by Bob. To perform a SAS collision, a malicious opponent
must find a way to have two ZRTP exchanges leading to the same SAS. It boils down to
be in position to compute the master key while still being able to modify it.

– When Alice encapsulates the shared secret using Bob’s public key, she cannot derive
the master key as she does not have access to the KEMPart2 packet yet.

– When Bob receives Alice’s ciphertext, he has access to all the material to compute
the master key. By commiting to use a specific nonce in the KEMPart2 packet before
receiving Alice’s ciphertext, only one value of the master key can be reached making
the collision attack on SAS very hard to achieve.
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Alice Bob
| |
| Alice and Bob establish a media session. |
| They initiate ZRTP on media ports |
| |
| F1 Hello (version, options, Alice’s ZID) |
|-------------------------------------------------->|
| HelloACK F2 |
|<--------------------------------------------------|
| Hello (version, options, Bob’s ZID) F3 |
|<--------------------------------------------------|
| F4 HelloACK |
|-------------------------------------------------->|
| |
| Bob acts as the initiator. |
| |
| Commit (Bob’s ZID, options, hash value, pvi) F5 |
|<--------------------------------------------------|
| F6 KEMPart1 (pvr, shared secret hashes) |
|-------------------------------------------------->|
| KEMPart2 (ni, shared secret hashes) F7 |
|<--------------------------------------------------|
| |
| Alice and Bob generate SRTP session key. |
| |
| F8 Confirm1 (MAC, D,A,V,E flags, sig) |
|-------------------------------------------------->|
| Confirm2 (MAC, D,A,V,E flags, sig) F9 |
|<--------------------------------------------------|
| F10 Conf2ACK |
|-------------------------------------------------->|
| SRTP begins |
|<=================================================>|

Figure 2: KEM mode ZRTP complete data flow
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5.3 ZRTP packet fragmentation

PQC key exchanges produce large public values(public key, cipher text) to be exchanged
with the other endpoint. UDP datagrams are often limited to a maximum of 1500 bytes if UDP
fragmentation is not desired. In order to compensate for this limitation we introduced a message
fragmentation mechanism. ZRTP messages can be fragmented over several zrtp packets.

Multiplexing scheme standard(Petit-Huguenin and Salgueiro, 2016) section 7 reserves for the
ZRTP packet format the values 16 to 19 on the first byte to clearly distinguish ZRTP packets
from STUN, DTLS, TURN or RTP/RTCP packets.

ZRTP standard as specified in (Zimmermann et al., 2011) uses value 16 as the first byte
of ZRTP packet. The ZRTP packet header fields (Sequence Numnber, Magic Cookie, Source
Identifier and CRC) description can be found in RFC6189 section 5.

We introduce the use of value 17 as first byte of ZRTP packet to distinguish packets carrying
a ZRTP message fragment. Packets holding message fragment get additional fields in the packet
header:

• message Id: a unique Id for this message, is attached to the message and is not incremented
at each retransmission like the sequence number. It is initialised to a random value and is
incremented for each new message generated.

• message total length: size, in 32-bit words of the total message.

• offset: offset of this fragment, in 32-bit words.

• fragment length: size of this fragment, in 32-bit words.

The fragmentation mechanism is opportunistic: A ZRTP exchange using a key agreement algo-
rithm not requiring large public values will use only regular packets and is thus fully compatible
with the ZRTP version 1.10 described in RFC6189.
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0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|0 0 0 1 0 0 0 1| Not Used: 0 | Sequence Number |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Magic Cookie ’ZRTP’ (0x5a525450) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Source Identifier |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| message Id | message total length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| offset | fragment length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
| ZRTP Message fragment(length as indicated) |
| . . . |
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| CRC (1 word) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 3: ZRTP packet format for fragmented ZRTP message

5.4 Suitable PQC algorithm properties

ZRTP impose some additional constraints on the choice of PQC KEM algorithm. As public key
and cipher text are sent on the network at each call establishment, we must focus on small sized
public keys and cipher text. This rules out for example Classic Mc Eliece. Another constraint
is to generate a set of key, encapsulate and decapsulate also at each call establishment. These
operations must be performed on mobile devices with sometime limited computation power.
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6 Instant messaging

Instant messaging is end2end encrypted using Lime(Pascal, 2019), a Signal protocol derivative.
This protocol relies on Elliptic-Curve Diffie-Hellman and EdDSA properties and no version using
post-quantum cryptography is available yet.

Instant messaging encryption is not encrypted using post-quantum cryptography, this is left
for future work.
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